Skip to main content

Advertisement

Log in

Pendubot: combining of energy and intuitive approaches to swing up, stabilization in erected pose

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The objective of this paper is to define a strategy for the swing up of a double-link pendulum and its stabilization in the unstable equilibrium state with both erected links. The first joint of this double-link pendulum, which is the suspension joint, is actuated and the second joint is passive. This double-link pendulum, usually called pendubot, is an underactuated system. The double-link pendulum is straightened during the energy boosting process. The swing up control switches to the balancing mode at the instant when the system comes to the basin of attraction. The limits on the torque amplitude are taken into account. The gains of the saturated balancing control are chosen to ensure the basin of attraction as large as possible. Simulation results demonstrate that our strategy is efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eberhard, P., Seifried, R., Gorius, T.: The big expo 2010 world exhibition pendulum-dynamics and control. In: Proceedings of the 1st Joint International Conference on Multibody Syst. Dyn. (2010)

    Google Scholar 

  2. Aoustin, Y., Chevallereau, C., Formal’skii, A.M.: Numerical and experimental study of the virtual quadruped—semiquad. Multibody Syst. Dyn. 16, 1–20 (2006)

    Article  MATH  Google Scholar 

  3. Schiehlen, W.: Energy-optimal design of walking machines. Multibody Syst. Dyn. 13, 129–141 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zaoui, C., Bruneau, O., Ouezdou, F.B., Maalej, A.: Simulations of the dynamic behavior of a bipedal robot with trunk and arms subjected to 3d external disturbances in a vertical posture, during walking and during object handling. Multibody Syst. Dyn. 21(3), 261–280 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lewis, F.L.: Applied Optimal Control and Estimation. Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  6. Spong, M.W.: The swing up control problem for the acrobot. IEEE Control Syst. Mag. 14(1), 49–55 (1995)

    Article  Google Scholar 

  7. Albouy, X., Praly, L.: On the use of dynamic invariants and forwarding for swinging up a spherical inverted pendulum. In: Proceedings of the IEEE Conference on Decision and Control, CDC00, December, Sydney 2000, pp. 1667–1672 (2000)

    Google Scholar 

  8. Astrom, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36(2), 287–295 (2000)

    Article  MathSciNet  Google Scholar 

  9. Fantoni, I., Lozano, R., Spong, M.W.: Energy based control of the pendubot. IEEE Trans. Autom. Control 45(4), 725–729 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shiriaev, A.S., Egeland, O., Ludvigsen, H., Fradkov, A.L.: Vss-version of energy based control for swinging up a pendulum. Syst. Control Lett. 44(1), 41–56 (2001)

    Article  MathSciNet  Google Scholar 

  11. Olfati-Saber, R.: Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Autom. Control 47(2), 305–308 (2002)

    Article  MathSciNet  Google Scholar 

  12. Zhang, M., Tarn, T.J.: Hybrid control of the pendubot. IEEE/ASME Trans. Mechatron. 7(1), 79–86 (2002)

    Article  Google Scholar 

  13. Furuta, K.: Control of pendulum: From super mechano-system to human adaptive mechatronics. In: Proceedings of the IEEE Conference on Decision and Control, CDC03, June 2003, pp. 1498–1507 (2000)

    Google Scholar 

  14. Chernous’ko, F.L., Anan’evskii, I.M., Reschmin, S.A.: Methods of control of nonlinear mechanical systems. Fizmatlit, Moscow (2006), in Russian

    Google Scholar 

  15. Muskinja, N., Tovonik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 53(2), 631–639 (2006)

    Article  Google Scholar 

  16. Reschmin, S.A.: Method of decomposition in the problem of control of inverted double-link pendulum using one control torque. J. Comput. Syst. Sci. Int. (6), 28–45 (2005)

  17. Lai, X.Z., She, X.Z., Yang, S.X., Wu, M.: Comprehensive unified control strategy for underactuated two-link manipulators. IEEE/ASME Trans. Syst. Man Cybern. Part B, Cybern. 39(2), 389–398 (2009)

    Article  Google Scholar 

  18. Bortoff, S., Spong, M.W.: Pseudolinearisation of the acrobot using spline functions. In: Proceedings of the Conference on Decision and Control, Tuscan, AZ, 1992, pp. 593–598 (1992)

  19. Formal’skii, A.M.: On global stabilization of the double inverted pendulum with control at the hinge between the links. Solid Mech. (5), 3–14 (2008)

  20. Xin, X., She, J.H., Yamasaki, T., Liu, Y.: Swing-up control based on virtual composite links for n-link underactuated robot with passive first joint. Automatica 45, 1186–1994 (2009)

    Article  Google Scholar 

  21. Spong, M.W., Block, D.J.: The pendubot: A mechatronic system for control reaserch and education. In: Proceedings of the IEEE CDC, 1995, pp. 555–557 (1995)

  22. Block, D.J., Spong, M.W.: Mechanical design and control of the pendubot. In: Proceedings of SAE Earthmoving Industry Conference (1995)

  23. Orlov, Y., Aguilar, L.T., Acho, L., Ortiz, A.: Swing up and balancing control of pendubot via model orbit stabilization: algorithm synthesis and experimental verififcation. In: Proceedings of the Conference on Decision and Control CDC06, San Diego, December 2006, pp. 6138–6144 (2006)

  24. Orlov, Y.: Finite-time stability and robust control synthesis of uncertain switched systems. SIAM J. Optim. Control 43, 1253–1271 (2005)

    Article  MATH  Google Scholar 

  25. Aström, K., Aracil, J., Gordillo, F. A new family of smooth strategies for swinging up a pendulum. In: Proceedings of the World Congress IFAC05, Praha, CdRom (July 2005)

  26. Lozano, R., Fantoni, I., Block, D.J.: Stabilisation of the inverted pendulum around its homoclinic orbit. Syst. Control Lett. 40(2), 197–204 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Beznos, A.V., Grishin, A., Lensky, A., Okhotsimsky, D., Formal’sky, A.: A pendulum controlled by a flywheel. Dokl. Math. 68(6), 302–307 (2003)

    MATH  Google Scholar 

  28. Aoustin, Y., Formal’skii, A.M., Martynenko, Y.: Stabilisation of unstable equilibrium postures of a two-link pendulum using a flywheel. J. Comput. Syst. Sci. Int. 45(2), 204–211 (2006)

    Article  MathSciNet  Google Scholar 

  29. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. PhD Thesis. Massachusetts Institute of Technology (2001)

  30. Valasek, M., Sika, Z.: Evaluation of dynamic capabilities of machines and robots. Multibody Syst. Dyn. 6(2), 183–202 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  32. Formal’skii, A.M.: On stabilization of an inverted double pendulum with one control torque. J. Comput. Syst. Sci. Int. 45(3), 337–344 (2006)

    Article  MathSciNet  Google Scholar 

  33. Formal’skii, A.M.: Controllability and Stability of Systems with Limited Ressources. Nauka, Moscow (1974) (in Russian)

    Google Scholar 

  34. Boltyansky, V.G.: Mathematical Methods of Optimal Control. Nauka, Moscow (1966) (in Russian)

    Google Scholar 

  35. Hu, T., Lin, Z., Qiu, L.: Stabilization of exponentially unstable linear systems with saturating actuators. IEEE Trans. Autom. Control 46(6), 973–979 (2001)

    MATH  MathSciNet  Google Scholar 

  36. Hu, T., Lin, Z.: Control Systems with Actuator Saturation, Analysis and Design. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  37. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  38. Aoustin, Y., Formal’skii, A.M.: Ball on a beam: Stabilization under saturated input control with large basin of attraction. Multibody Syst. Dyn. 21, 71–89 (2008)

    Article  MathSciNet  Google Scholar 

  39. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley-Interscience, New York (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Aoustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoustin, Y., Formal’skii, A. & Martynenko, Y. Pendubot: combining of energy and intuitive approaches to swing up, stabilization in erected pose. Multibody Syst Dyn 25, 65–80 (2011). https://doi.org/10.1007/s11044-010-9228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-010-9228-5

Keywords

Navigation